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Atmospheric Numerical Modeling : [Desirable Properties]

Numerical algorithms for the next generation atmospheric models should be based on the
following criteria:

)

© © ¢ ¢ ¢

Inherent local and global conservation

High-order accuracy

Computational efficiency

Geometric flexibility (complex domain boundaries, AMR capability)
Non-oscillatory advection (monotonic or positivity preservation)

High parallel efficiency (local method, petascale capability aiming O(100K) processors)

Examples of numerical methods which can address the above requirements:-

Continuous Galerkin or Spectral Element (SE) method, Multimoment Finite-Volume (FV)
Method and Discontinuous Galerkin (DG) Method etc..

The DG method (DGM) is a hybrid approach which combines nice features of SE and FV
methods
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Discontinuous Galerkin Method (DGM): An Overview

Part-I

@ How to solve the basic building block of a complex model — the
advection problem — with DGM?
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Flux-Form Atmospheric Equations (Conservation Laws)

@ A large class of atmospheric equations of motion for compressible and incompressible
flows can be written in flux (conservation) form.

@ Conservation laws are systems of nonlinear partial differential equations (PDEs) in flux
form and can be written:

3
1o} 0
—U(x, t E —Fj(U,x,t) = S(U
ot (X7 )+j:1 8XJ' J( ) X, ) ( )7

where
@ x is the 3D space coordinate and time t > 0. U(x, t) is the state vector represents
mass, momentum and energy etc.
@ F;(U) are given flux vectors and include diffusive and convective effects
@ S(U) is the source term

@ Linear transport problem is a simple example of conservation law:

0,
8_¢ +V-(pV) =0, orp:+div(pV) =0
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-
Discontinuous Galerkin Method (DGM) in 1D

@ 1D scalar conservation law:

oU LOFWU) L i ax (0, T),
ot Ox
Us(x) = U(x,t=0), VYxeQ

@ E.g, F(U) = c U (Linear advection), F(U) = U?/2 (Burgers' Equation)

@ The domain Q (periodic) is partitioned into Ny non-overlapping elements (intervals)
i =1Ix—1/2:X41/2], S = 1,..., Nx, and Ax; = (xj41/2 — Xj—1/2)
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DGM-1D: Weak Formulation

A weak formulation of the problem for the approximate solution Uy, is obtained by multiplying
the PDE by a test function ¢p(x) and integrating over an element /

ou OF (U
/ |:7h + ( h):| <ph(x)dX =0, Unpn€Vy
I ot Ox

Integrating the second term by parts —-

[W@h(X)dx—/F(Uh(x t))_dx+

/ i

F(Un(x41/2, 1)) 2n(x 11 5) = F(Un(x;

—1/2, 1)) n(x;" C12) =0,

where ¢(x~) and ¢(xT) denote "left” and "right” limits
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DGM-1D: Flux term (“Gluing” the discontinuous element edges)

f’\o\/cw;n Fit)
<1 : =
Q ; Xjr12 Q sl

@ Flux function F(Uy) is discontinuous at the interfaces x;11/»

@ F(Up) is replaced by a numerical flux function F(Uy), dependent on the left and right
limits of the discontinuous function U. At the interface x;;1/2,

,,:-(Uh)j+l/2(t) = IE(Uh()(j:_1/27 t): Uh(Xj-:_l/T t))
@ Typical flux formulae (Approx. Reimann Solvers): Gudunov, Lax-Friedrichs, Roe, HLLC,
etc.

@ Lax-Friedrichs nurmerical flux formula:-

F(uw) = 5 [(F(U) + FUP) = au - 0]
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DGM-1D: Space Discretization (Evaluation of the Integrals)

+1
o ' R
Qr »7 v RN
ij_j Ax;

Axji
@ Map every element ; onto the reference element [—1,41] by introducing a local
coordinate & € [-1,+1] s.t.,
2(x —xj) 0] 2 0
&= Tjj’ X = (Xj-12 +X4172)/2 = -
@ Use a high-order Gaussian quadrature such as the Gauss-Legendre (GL) or

Ox - Ax; 875
Gauss-Lobatto-Legendre (GLL) quadrature rule. The GLL qudrature is ‘exact’ for
polynomials of degree up to 2N — 1.
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DGM-1D: Representation of Test function & Approximate Solution

Legendre Polynomials (Degree <=4)

L(x)
o

-1 -0.5 0 0.5 1
X

@ The model basis set for the PX DG method consists of Legendre polynomials,
B= {PZ(£)7£:07177k}
@ Test function ¢,(x) and approximatg solution Up(x) belong to B

Un(&t) = D UL(t)Py(§) for —1<&<1, where
£=0
2041 1
Ut = 25— [ UenPe)de =01,k
! 2
/Pm(X)Pn(X)dX = ————0m,n < Orthogonality
1 2m+1

@ U[(t) is the degrees of freedom (dof) evolves w.r.t time.
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N
DGM-1D: Modal Basis Set for a “P?" Method

@ For the P? method, B = {Py, P1, P} = {1,¢&,(3¢? — 1)/2}.

@ Approximate solution:

Un(€,t) = Up(2) + Up(£) € + Uj (1) [3¢? — 1]

@ The degrees of freedom to evolve in t are:

Up(t)
U(t)

Uh(t)
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Legendre Polynomials (Degree <=4)
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DGM-1D: Orthogonal Basis Set (Modal Vs Nodal)

Modal basis functions Nodal basis functions

Legendre Polynomials (Degree <=4) 4th Degree Lagrange Basis Functions

-1 -05 0 05 1 -1 -05 0 05 1
X X
@ The nodal basis set B is constructed using Lagrange-Legendre polynomials h;(£) with
roots at Gauss-Lobatto quadrature points (physical space).

k
Ui(§) = D Uih(§) for —1<¢<1,
Jj=0

hi(€) =

(€~ 1) PL(€) .
Kkt 1) Pu&) (E— &)’ /,1" '

@ Nodal version was shown to be more computationally efficient than the Modal version
(see, Levy, Nair & Tufo, Comput. & Geos. 2007)

@ Modal version is more “friendly” with monotic limiting
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DG-1D: Semi-Discretized Form

@ Finally, the weak formulation leads the PDE to the time dependent ODE

ot Ix

Example: For the Pl case on an element IJ we need to solve:

/,, [% n aF(Uh)} on(x)dx =0 = %Ufj(t) =L(Up) in(0,T)xQ

GO = L IFE=10 - Fe=10)
_ 1
quo = 2 (Fre=1o+re=-101- [ v o)

Solve the ODEs for the modes at new time level Uf(t + At) For the P! case,

Un(€,t + At) = UY(t + At) + UL(E, t+ At) €

FV DG
Xy-3/2 Xj-1/2 I Xj+1/2 X+3/2 I X-172 I Xj+1/2 I
j -1 i j+1
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Time Integration

@ For the ODE of the form,

%U(t) =L(U) in(0,T)xQ

@ Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (Gottlieb et al.,
SIAM Review, 2001)

Ut = U+ Atc(Un)
3 1 1

u® = Zyn4 2o 4 Zarc(u®
gV U AU
1 2 2

Uttt = Zut 42U 4 ZAaec(u®).
UM U+ AU

@ CFL for the DG scheme is estimated to be 1/(2k + 1), where k is the degree of the
polynomial (Cockburn and Shu, 1989).

@ Remedy: Use low-order polynomials (k < 3) or efficient semi-implicit / implicit time
integrators or high-order multi-stage R-K method.
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DGM-1D: Results (Simple Linear Advection Test)

DG1D (Ne=40, deg=2, T=4000dt) DGID (Ne=40, deg=4, T=4000dt)
s ; : . 15 ; : .
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Discontinuous Galerkin (DG) Methods in 2D Cartesian Geometry

2D Scalar conservation law:
ou . 1 2
o +V-FU)=SU), in (0,T)xD; V(x!x?)eD,

where U = U(x}, x?,t), V = (9/0x*,0/0x?), F = (F, G) is the flux function, and S is the
source term.

Domain D=U Q;;
Qi,['nﬂ . . .. .
@ The domain D is partitioned into
non-overlapping elements Q;;
Element o El d di .
ement edges are discontinuous
Qi Q;; Qjs1 &
@ Problem is locally solved on each
element Q;;
Qi
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DG-2D Spatial Discretization for an Element Q. in D

@ Approximate solution Uy, belongs to a vector space V}, of polynomials Py (Se).

@ The Galerkin formulation: Multiplication of the basic equation by a test function ¢p € V),
and integration over an element Q. with boundary e,

/e [% +V-F(Up) — S(Uh):| ©pdQ =0

@ Weak Galerkin formulation : Integration by parts (Green's theorem) yields:

& [ vnendn— [ FU) - Verda + [ FU) A dr= [ S(U)edn
ot Ja, 2. Jre 2.
e @ Orthogonal polynomials (basis functions) are
s employed for approximating U, and ¢ on Q.
Element 4} @ Surface and line integrals are evaluated with
{} Q. R high-order Gaussian quadrature rule
@ Exact Integration: The flux (line) integral
should be an order higher than the surface
i integral (Cockburn & Shu, 1989).
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|
DG-2D: High-Order Nodal Spatial Discretization

@ The nodal basis set is constructed using a tensor-product of Lagrange polynomials h; (&),
with roots at Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) quadrature points
{&}- , )

(€& -1)Py(©)
v [ mOm(© = wa

N(N +1) Py(&) (§— &) /-1

@ Py(€) is the Nth degree Legendre polynomial; and w; are Gauss quadrature weights

[hi(©)]eLL =

- - °
o e e ©
°
o e e o
°
(a) (b) (c)

The approximate solution Uy, and test function are represented in terms of nodal basis set.

Uu(fm):ZZUuh Yhi(n) for —1<€n<1,

i=0 j=0
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The DG, SE & FV Methods

DG SE
P e e P Py °
¢ ® 90 o o ¢ [ ] ® ¢ o LI}
o o @ 0o O e ¢ ® © L ) CI )
oo e—e oo do—o
Boundary Discontinuity CO Continuous
FV

For DGM degrees of freedom (d.o.f) to evolve per element is N2, where N is the order of
accuracy.

@ For FV method the d.o.f is 1 (cell-average), irrespective of order of accuracy.

DGM is based on conservation laws but exploits the spectral expansion of SE method and
treats the element boundaries using FV "tricks.”
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Monotonic Limiter for DG transport

@ Importance:

@ In atmospheric models, mixing ratios of the advecting chemical species and
humidity should be non-negative and free from spurious oscillation.
@ The model should avoid creating unphysical negative mass

@ Challenges:

@ Godunov theorem (1959): “Monotone scheme can be at most first-order accurate”

@ There is a “conflict of interest” between the high-order methods and monotonicity
preservation!

@ In principle, a limiter should eliminate spurious oscillation and preserve high-order
nature of the solution to a maximum possible extent

@ Existing Limiters for DGM:

@ Minmod limiter (Cockburm & Shu, 1989): Based on van Leer’s slope limiting, but
too diffusive

@ Limiters based on WENO or H-WENO (Qui & Shu 2005), Expensive and no
positivity preservation

@ New bound-preserving limiter: Positivity-preserving and local (Zhang & Shu, 2010)
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Local Bound-Preserving Limiter for DGM

@ If the global maximum M and minimum m values of the solution p; j(x,y) is known, then
the limited solution f; ;(x, y):

| | gy
Mij— i mi; =T

i y) =0pij(x,y) + (1 —0) Tij, 6 =min{|

@ 1 is the average solution in the element Q;;, M;; = max( y)eq; ; pi.j(x,y) and
mi ;= min eq; ; Pij(X¥)-

@ be [0,1]. The positivity preserving option is a special case of BP filter, and can be
achieved my setting m* = 0.

@ This limiter is conservative and local to the element (Zhang & Shu, JCP, 2010)
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DG Advection on 2D Cartesian Grid (Solid-Body Rotation)
MWR, 2012)

@ Solid-body rotation (Leveque, 2002) , 80 x 80 elements.

@ A DG P? (third-order) Model version with 6 DOFs on 3 x 3 G-L grid (Zhang & Nair,

a) P2-DG

b) P2-DG + BP

¢) P2-DG + H-WENO + BP
rnair@ucar.edu (CISL/NCAR) DCMIP: Advection-11
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|
DG Advection on 2D Cartesian Grid

@ HWENO uses 3 x 3 cells and completely removes oscillation, but more diffusive.

Leveque data

(a) DG3 (b) DG3 with BP

T T T T T T T T T T
0.80 - 080 —
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0.80 [

L L
-0.80 -040 000 040 080 080  -040 000 040 080
(c) DG3 with HWENO (d) DG3 with HWENO and BP
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DG-2D: Scaling Results (Levy, Nair & Tufo, 2007)

@ Problem: Advection of a Gaussin-hill, 80 x 80 elements with 6 x 6 GLL grid

@ Strong scaling is measured by increase the number processes running while keeping the
problem size constant

@ Weak scaling is measured by scaling the problem along with the number of processors, so
that work per process is constant

2D Advection 2D Advection
30} —Linear speed-up 500f @,
—~ | -x-Ne = 6400, Ng = 6 N
%lﬁ §400 0'0'9'9"6'0'0'0'0'0
12} ~
g8 g 300
24 S
2 2 200
& 4 =100
1 2 4 8 16 32 1 4 64 256 1024
Number of Processes (log scale) Number of Processes (log scale)
Strong scaling Weak scaling
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Extending DG Methods to Spherical Geometry: Various Grid Options

@ DG method can be potentially used on various spherical mesh with triangular or

quadrilateral (or both) elements

Cubed sphere

e
2N

/4 N\
{
(ORI

OO

KRS )

e m2s%e
N
~~§.. ---‘/E/

Figs source David Hall

Composite (overset)
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Cubed-Sphere: Central Equiangular (Gnomonic) Projection

@ The sphere is decomposed into 6 identical regions, and free of polar singularities
(Sadourny, MWR, 1972).
@ Equiangular projection using central angles (x!, x?).

@ Non-orthogonal grid lines and discontinuous edges

All the grid lines are great-circle arcs

Quasi-uniform rectangular mesh, well suited for the element-based methods such as
DG or SE methods (CAM-HOMME)

¢ ¢
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Non-Orhogonal Cubed-Sphere Grid System

Metric term (Jacobian) of [Cubed-Sphere = Sphere] Transform on the cubed-sphere: /G
Central angles (x!,x?) € [-7/4,7/4], (Ax} = Ax?) are the independent variables.
Transport equation (Nair et al. MWR, 2005):

d d d
a(\/Eh)Jr ﬁ(\/aulh)-i- ﬁ(\/EuZh) =0

Computational domain is the surface of cube [—7 /4, +7/4]3

+T/4
z
5
i (Top)
X
Q, F
1
F, F, F, F, y
— =5 -Tn/4 X! +1/4 F, X
Physical Domain Computational Domain (Bottom)
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Advection: Deformational Flow (Moving Vortices on the Sphere)

DG: Moving Vortex on the Sphere (HOMME/Nair) DG: Moving Vortex on the Sphere (HOMME/Nair)

Initial field and DG solution after 12 days. Max error is O(107>)

A Smooth Deformational Flow Test [Nair & Jablonowski (MWR, 2008)]

@ The vortices are located at diametrically opposite sides of the sphere, the vortices deform
as they move along a prescribed trajectory.

@ Analytical solution is known and the trajectory is chosen to be a great circle along the NE
direction (a = 7/4).
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DGM Advection: Extreme deformation

@ Deformational flow: Fine filament preservation (Zhang & Nair, MWR, 2012)
@ Modal P2-DG with 100 x 100 x 6 cells, At = 600s, 60-day simulation

Deformational Flow (Vortex) Test
(a) Initial Vortex Fields (b) P2DG Solution (day 36) (c) P2DG+HWENO Soln (day 36)

[EEEE 11T [EEEE 11T [EEEE 11T
56 7 8 91 1112181415 56 7 8 91 1112181415 56 7 8 91 1112181415

(d) Exact Solution (day 60) (e) P2DG Solution (day 60) (f) P2DG+HWENO Soln (day 60)

[EEEE 1117 [EEEE) 1117 [EEEE) 1117
5 5

55 7 8 9 1 111218141 67891 1112131415 556 7 8 9 1 1112151415
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DGM Advection: Deformational flow (Slotted-Cylinder)

@ Deformational flow (non-smooth deformation) (Nair & Laurtitzen, JCP, 2010)

@ Modal P2-DG with 45 x 45 x 6 cells, At = 0.00125s, T = 5.

Deformational Flow: Slotted Cylinder

(a) Initial Fields (t=0)

/2

(b) Deformed Fields(DG+HWENO+BP) at t=T/2

[Cea 1 2]

/2

w2 n sr/z

(c) Deformed Fields(DG+BP) at t=T/2

o /2 " n/z 2n

(d) Final Fields(DG+HWENO+BP) (t=T)

/2 4

T8 |
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DG on Yin-Yang Overset Spherical Grid [kageyama and Sato (2004)]

It avoids the pole problem of the RLL grid, and there are no singular points.

The grid spacing is quasi-uniform with a largest to smallest grid-length ratio v/2
Each grid component is orthogonal, producing a simple analytical form for PDEs.
Overlap regions provide two set of solution.

Numerical schemes require special treatment for conservation

© e 600

Yin-Yang Mesh (YY) Yin-Yang Polar Variant (YY-P)

N-S, circumpolar flow E-W, equatorial flow
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DG on Yin-Yang Grid: Advection [Han & Nair, MWR, 2012]

@ Sphere S = Y U Y’ where Y: Yin region, and Y’: Yang region. Y L Y’
@ Y is a rectangular region in lat/lon (6, \)-space, X € [-37/2 — §,37/2 + 4],

0 € [-m/4 — 8, m/4 + 8] where ¢ is the overlap region.

@ There are total 6 x N2 elements (DOF) for the DG spatial discretization.

L} YinMesh

Yin-Yang Grid

1208
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DG Advection on YY Grid: Cosine-Bell Test (Time-traces of ¢1, ¢, £ errors)

Yin-Yang grid at « = 0° and o = 45°, Ne = 4,Ng =8

Time (days)

@ Cosine bell transport results with Ne = 4 and Nz = 8 nodes per element (approximately
3.2° resolution, and 6144 DOF).
@ Figs from Hall & Nair, MWR, 2012

@ Note: Exact mass conservation can be enforced by additional integral constraints
(Baba et al. (2010), Peng et al. (2006))
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DGM Convergence: Gaussian Advection and Spectral Convergence

@ Advection of a Gaussian Profile (Levy et al. 2007; Hall & Nair, MWR, 2012)
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Beyond Advection: DG-3D Model Vs. CAM Spectral Models

@ DG-3D Hydrostatic Dycore (Nair et al. Comput. & Fluids, 2009)
@ JW-Baroclinic Instability Test, Day 8 Ps (= 1° resolution)
@ The DG Solution is smooth and free from “spectral ringing”.

NCAR-T85L26, Day 8 HOMME-SE/Ne30Nv4, Day 8 HOMME-DG/Ne18Nv6, Day 8

Surface pressure hPa Surface pressure [res: 1deg] hPa Surface pressure [res: 1deg] hPa

970 980 990 1000 1010 970 980 990 1000 1010 970 980 990 1000 1010
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Vertical Aspects of 3D Advection: An Overview

Part-11

@ The quasi-Lagrangian coordinates for advection problems
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Hydrostatic Equations in Flux Form: Curvilinear (x!, x? 1) coordinates

%’LVC'E“F"?%—? = \/EU2(f+C)—RT%(Inp)
%”LVC'E?”/%Q = - Gul(f-i-C)—RT%(lnp)
2 myeve (Um)+ A7
%(m@)+vc~(ufem)+w”;7ze) - 0
2 (my+9e- (Wam) + 2719
09 o® RT op

0,
mzﬁ£7VCE( ),T]:T](p,psLGZdet(G,’j), T T T Al

on p On

Where m is the mass function, © is the potential temperature and g is the moisture variable.
U’ = (u!, u?), E; = (E,0), E; = (0,E); E= ¢ + % (uru! + wpu?) is the energy term. ® is the
geopotential, ( is the relative vorticity, and f is the Coriolis term.

[Ref: HOMME/DG, Nair et al. Comput. & Fluids 2009]

ax’ 9x2
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Vertical (quasi) Lagrangian Coordinates (Starr, J. Meterol. 1945)

A ‘“vanishing trick” for vertical advection terms!

@ Terrain-following Eulerian surfaces are treated as material surfaces () = 0).

@ Simplified hydrostatic equations with no ‘“vertical terms”
@ The resulting Lagrangian surfaces are free to move up or down direction.

Vertically Moving Lagrangian Surfaces
prop

== k-1/2

\
op k
i
]
k+1/2
| —————
= I
L— | =
o, | _— Topography P
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The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

@ Over time, Lagrangian surfaces deform and must be remapped.

@ The velocity fields (u1, uz), and total energy (I'g) are remapped onto the reference

coordinates.

‘ AP= pressure thickness ‘ ‘ Lagrangian Surface
; L I
L i AP Lz\
; ] — Ap
L : : i
‘ i i L=
//://\\ )
e e A e
— Topography — —

Terrain—following Lagrangian control-volume coordinates

Remapping: Lauritzen & Nair, MWR, 2008;
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Remapping (Rezoning or Re-gridding) on a 1D Grid

i3l
e
\/

A
=

@ Remapping: Interpolation from a source grid to target grid with constraints (conservation,
monotonicity, positivity-preservation etc.).

@ Application: Conservative semi-Lagrangian methods (e.g. CSLAM); Grid-to-grid data
transfer for pre- or post-processing (GeCore).
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Remapping (Rezoning or Re-gridding) on a 1D Grid

1D Recostruction

p/+l

A

Xivire

\/

@ Reconstruction: Fit a piecewise polynomial pj(x) for every cell Ax; = x;11/2 — Xj_1/2,

using the known cell-average values p; from the neighboring cells.

@ The subgrid-scale distribution p;(x) must satisfy the conservation constraint:

pj =

1
Axj

Xj+1/2
/ pj(x)dx, = Mass = p; Ax;

Xj—1/2

@ pj(x) may be further modified to be monotonic (E.g: PLM, PPM, PCM, PHM)
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|
Remapping 1D Grid

1D Remapping

L] iR

< >
< >

* * -
xF * Ktz
12 Axt Y} Ax;

@ Mass in the target cell (ij* = XJ:_I/Q — xj*_1/2) can be expressed as the difference of
“Accumulated Mass" (Am):

=k * =k 1
5f Ax = An(RR') — Am(LL') = 5} = §[Am(RR/)—Am(LL/)]
J

where

x* j—1 x*
1/2 _ 1/2
Am(RR") :/’+ p(x)dx = pr Axk+/’+ pj—1(x)dx

XRef k=1 Xj—3/2
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Vertical Advection with Lagrangian 7-Cooridate

; Reference (initial) grid n = n(P, Ps) € [ntop, 1]
E _
P ? G Source grid = Lagrangian nt

Target grid = Eulerian nf; ZAnE = ZAn,’;

Lagrangian 77,& can be computed from the
predicted “pressure thickness” AP (CAM-FV)

Remapping is performed at every advective At

© © ¢ ¢

v L
B AN
A

E
Ns172

(]

® @ Every 1D vertical trajectory information can be
€T “recycled” for all tracers
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S
3D Transport ( CAM-SE): SE horizontal + vertical remapping

@ CAM-SE (1°): JW-Test divergent flow field. SE horizontal transport is quasi-monotonic
@ At, =4 x 90 s, vertical remapping by PCM (Zerroukat, 2005) for advection.

Figure courtesy: Christoph Erath
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Summary & Conclusions :

@ The DG method with moderate order (third or fourth) is an excellent choice for transport
problems as applied in atmospheric sciences. DGM addresses:
@ High-order accuracy
@ Geometric flexibility
© Positivity-preserving advection
@ High parallel efficiency
@ Local and global conservation

@ In comparison with finite-volume and finite-difference implementations of the Yin-Yang
grid, the DG approach is considerably simpler as the overset interpolation is local,
requiring information from the interior of a single element.

@ In general, modified YY-P and YY meshes exhibited similar performance on most tests,
while the YY-P mesh performed better on cases with strictly zonal flow.

@ DG method is an ideal candidate for the new generation petascale-capable dynamical
cores.

@ The “moving” vertical Lagrangian (evolve and remap approach) method provides an
efficient way for 3D conservative multi-tracer transport.
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THANK YQOU!
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